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SUMMARY

Grid computing promises access to large amounts of computing power, but so far adoption of Grid
computing has been limited to highly specialized experts for three reasons. First, users are used to batch
systems, and interfaces to Grid software are often complex and different to those in batch systems.
Second, users are used to having transparent file access, which Grid software does not conveniently provide.
Third, efforts to achieve wide-spread coordination of computers while solving the first two problems is
hampered when clusters are on private networks. Here we bring together a variety of software that allows
users to almost transparently use Grid resources as if they were local resources while providing transparent
access to files, even when private networks intervene. As a motivating example, the BaBar Monte Carlo
production system is deployed on a truly distributed environment, the European DataGrid, without any
modification to the application itself. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

At ‘GRID 2002’, Gabrielle Allen et al. made the observation that there is an eminent shortage of
‘real Grid users’ [1]. They claimed that two main obstacles prevent applications from benefiting
from Grid computing. First, the absence of a vision of how to implement this new technology and,
second, a toolkit of higher-level Grid services, tailored for the application needs, is not available.
They introduced the GridLab project aimed at delivering an API through which applications access
and use distributed resources.

We fully acknowledge these two problems and the need for projects that enable straightforward
development of new applications suitable for distributed systems. However, the idea that almost every
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existing application ought to be restructured to be deployed on a distributed system comes at an
enormous cost in development and debugging labor. Regardless, a large number of users hopes to
benefit from large-scale distributed computing. If a way is found to deploy applications on a distributed
system without making modifications, then both hardware and human resources can be used more
efficiently.

How are we to make distributed computing accessible to ordinary computing applications, that
so far struggle to benefit from the promises of distributed computing? Typical developers write
their applications on standalone machines, making liberal use of complex and powerful libraries and
programming environments. By re-using existing tools, developers are able to concentrate on their
craft rather than reinventing computing from the ground upwards. Software is created, debugged and
validated on ordinary workstations long before any thought turns to distributed computing. These issues
are the challenge of distributed computing in the real world and lead to the shortage of Grid users: for
social and technical reasons, little attention is paid to the distributed nature of resources during the
development of most user applications.

The solution we propose is two fold. First, the users interact with a well-known batch interface
that hides the complexities of a system that spans various administrative domains. Although this
batch system provides familiar functionality for the end users, its implementation is unconventional:
it harnesses multi-domain resources as if they all belong to one giant local computing pool. Second, the
application runs in a virtual environment that provides it with the illusion of a local system, independent
of the actual location of the resources it uses.

These objectives are achieved by integrating the functionality of five components. The first
component is ‘Condor’, a batch system providing a standard user interface to manage distributed
resources. The second component is ‘Condor-G’, a tool that uses inter-domain resource management
protocols to provide resource discovery and resource access across administrative domains. The third
component is called ‘gliding in’, a technique that allows the remote resources to become an integral part
of the original batch pool. ‘Generic connection brokering’ is the fourth component, making it possible
to use the other components across firewalls and private networks. The last component is ‘Parrot’;
it implements an interpositioning technique based on the debugger trap to provide the application with
transparent file I/O over a wide-area network (WAN) without any modification to the user application.

As a motivating example, the deployment of an application into a real distributed environment
is described, without any modification to the application itself. This application, the BaBar Monte
Carlo production system, is representative of the applications described earlier; it consists of multiple
processes and complex libraries, poorly suited to most distributed computing and file systems.
In particular, the problem of working through an aggressive firewall that discards active TCP
connections is addressed.

2. WORKING ON A COMPUTATIONAL GRID

There exist countless systems for harnessing remote processors and accessing remote data, but many
place stringent requirements on the applications that they accept. A batch system might require
that all programs be a single executable performing no interprocess communication. A distributed
file system may provide unusual consistency semantics that are at odds with a user’s expectations.
Many experimental systems expect users to re-write their software to take advantage of new features,
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while many production systems expect users to have administrator privileges on all machines on a
network.

A computational Grid is inherently an unfriendly environment with its own challenges. Significant
problems arise when resources need to be discovered, acquired and managed across the boundaries of
administrative domains. Furthermore, installing most software on a new cluster is a labor-intensive
process that defies automation: executables, scripts and libraries must be unpacked and installed;
environment variables and other settings must be configured; database structures must be initialized;
dependent software must be discovered and installed. Some software expects a uniform user database
across multiple machines; this is an impossibility on a computational Grid. The nature of a distributed
environment ensures that network outages and performance variations are common events.

Users and applications should be shielded from these complications. The satisfaction of a user
with Grid computing depends heavily on the amount of effort required to deploy an application on
a distributed system. This effort is drastically reduced when users can submit their jobs through a well-
known batch interface, one that does not require extra knowledge to run an application on resources in
different administrative domains. The assembly of such a system is presented in Section 2.1. The way
this ‘overlay batch system’ deals with network complexity is entirely different from that of a standard
batch system. In contrast to normal batch nodes, Grid resources can often not be accessed directly by
the batch system. These connection issues are handled by a generic layer in between the batch system
and its system calls as will be discussed in Section 2.2.

Another equally important factor in the user experience is the success rate of the remotely executed
applications. In Section 2.3 the construction of a virtual environment is discussed that allows almost
any application that runs correctly on a local machine to complete successfully on Grid resources as
well.

2.1. Resource management

The proposed user interface to the Grid resources is organized around Condor, a batch system to
manage the workload [2]. It provides a job queuing mechanism, a scheduling policy, a priority scheme,
resource monitoring and resource management. The users submit their jobs to the batch system, which
places them into a queue. The batch system chooses when and where the jobs are run based upon its
policy and monitors their progress. Ultimately the user is informed upon completion.

Consider a Grid environment in which an individual user may, in principle, have access to
computational resources at many sites. The user defines a job on a user interface machine by specifying
the resource requirements, the input and output files and the program to be executed. An agent runs
on a machine with access to the batch system and provides a reliable single access point to all the
resources the user is authorized to use. Condor-G [3] contains an implementation of such an agent.
The functionality of Condor-G is shown in Figure 1. It uses the protocols defined by the Globus
Toolkit [4], a de facto standard for Grid computing, to communicate with the Grid sites.

The scheduler of the batch system responds to the request to run jobs on Grid resources by creating
a new Grid manager process to submit and manage those jobs. One Grid manager handles all jobs for a
single user and terminates once they are complete. All authentication requests are handled by Condor-
G via the Grid security infrastructure (GSI) [5], which allows for single sign-on based on a public
key infrastructure (PKI). The Grid manager submits the jobs to a Grid site using the Grid resource
allocation and management (GRAM) [6] protocol. On the Grid sites, each received job results in the

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:787–801



790 S. KLOUS ET AL.

B a t c h  s y s t e m

User interface machine

User

Define

job

R e q u e s t

job

Gr id  resources

storage system

Resource

broker

S i t e  A

Job  manager

Job  managerS c h e d u l e r

S i t e  N

Job  manager

Job  managerS c h e d u l e r

Grid
manager

Condor - G

Condor

Figure 1. Condor-G functionality. The batch scheduler creates a Grid manager to handle jobs on
remote resources. Note that the figures use the following convention: tasks are in circles, processes

in boxes and groups are in boxes with rounded corners.

creation of a job manager process. This process handles the job life cycle at the Grid site. It connects
back to the Grid manager, with GSI mechanisms for authentication and retrieves the job’s executable
and input files using global access to secondary storage (GASS) [7]. The standard output and error of
the jobs are streamed real-time via the same route. The process submits the job to a scheduler running
on the Grid site and keeps the Grid manager up to date about the job status. The Grid manager, in turn,
informs the batch system on the user site to make sure the user gets an accurate overview of the jobs
on the remote resources.

The techniques described above allow for the construction, submission and monitoring of jobs
on remote resources. Condor-G provides fault tolerance that handles the complications of a truly
distributed environment. Still, it does not provide a complete integration of the Grid resources with
the batch system on the user site. Jobs submitted to various Grid sites end up in different queues, often
with different types of scheduling policies and priority schemes. The user does not know and does not
want to know the details of the resource allocation mechanisms for all these sites to get information
about the expected time the job will run. An overview of allocated resources that can immediately
be used to run the jobs listed in a user queue is much more convenient. The jobs in this queue are
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Figure 2. Gliding-in functionality. The remote resources become an integral part of the pool, directly
managed by the batch system on the user site.

awaiting either the allocation of new resources or one of the already allocated resources to become
available. This functionality is implemented with a technique called ‘gliding-in’ [3], which is shown in
Figure 2.

In the gliding-in scheme, Condor-G no longer submits user jobs to the remote resources. Instead, the
submitted jobs contain the batch system processes themselves. The required software for these jobs is
downloaded from a central storage with a GSI enabled file transfer protocol (GSIFTP) [8]. When the
processes are running on the remote Grid resources, it will appear as if the batch system on the user site
has grown. Users can now submit their jobs to these resources directly via their batch system, without
the use of Grid mechanisms. In this sense, gliding-in creates an overlay batch system: the acquired
Grid resources provide all of the features of normal batch nodes.

As a positive side effect, this method disentangles the stages of allocation and execution. The batch
system can guarantee optimal queuing times to its users by submitting batch processes to all remote
resources, annulling those it does not use. This prevents a job from waiting at one remote resource
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while another resource capable of serving the job is available‡. Batch processes on remote sites
shut down gracefully when they do not receive any jobs to execute after a (configurable) amount of
time, thus guarding against runaway processes. Resource allocation can be further optimized with the
development of more intelligent resource planning and scheduling agents, which are able to negotiate
with Grid scheduling tools.

2.2. Dealing with network complexity

The effort to achieve this wide-spread coordination of computers is hampered when clusters are on
private networks. Batch systems in general assume the availability of bidirectional communication to
the worker nodes. Although worker nodes on Grid sites often have outbound IP connectivity, problems
arise when the batch system on the user site tries to initiate contact with the worker nodes on private
networks or behind firewalls. Private networks are, however, common practice, since they provide easy
network management and address planning as well as a solution to the IPv4 address shortage problem.
Firewalls play important roles in protecting networks and are ready to play an even more important
role as the security headquarters of integrated security systems.

For the batch system to work seamlessly across private networks and over firewalls, the symmetry in
the peer-to-peer connections needs to be recovered. The solution should be scalable and not require any
special privileges on the side of the Grid resources. Generic connection brokering (GCB) [9] possesses
these properties. An example of a system using GCB is shown in Figure 3.

The system shown consists of one node in the public and two in the private network that try to
run applications requiring bidirectional communication between them. The applications are GCB-
enabled on both the public and private nodes, i.e. they are able to use GCB functionality to solve
communication issues. Outbound IP connectivity of the nodes on the private networks is crucial for
this solution§. The nodes in the private network send a register request to the GCB server (solid lines).
The server creates proxy sockets of the same type as the client sockets, binds them, makes them passive
and returns the addresses to the private nodes. From now on, the private nodes use these addresses as
their network identity (i.e. whenever they need to inform other processes of their address, they send the
proxy address instead of their real address). When the public node wants to connect to the private node,
it asks the GCB server to broker the connection. The server decides, based on the network situation
of both nodes, who should actively connect and arranges accordingly (dotted lines). If either cannot
connect to the other, because, e.g., both are on private networks, it lets both parties connect to the server
and relays the packets between them (dash-dotted line).

Gliding-in and GCB form a powerful combination in the area of Grid computing. Together they
are capable of extending the functionality of a batch system on the user site into private networks of
other domains without the need of administrative privileges. GCB is implemented as a layer between

‡This can also be accomplished by directly submitting the user job to multiple sites. However, the separation of the allocation
and execution stages allow for a more opportunistic scheduling approach. It is not necessary to have the user job available when
a request for resource allocation is submitted.
§This statement is not entirely correct. The nodes on the private networks need to be able to contact the GCB server and the
GCB server needs to be accessible via a public internet address. If the GCB server manages only one private network, it could
be installed on the head node and the private nodes would not need outbound IP connectivity. This construction would, however,
require the ability to start a long-running process on the head node.
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Figure 3. GCB functionality. Connections involving nodes on private networks are rearranged when necessary.

the batch system software and its system calls. Since the GCB layer provides the same interfaces
and semantics of socket calls, the batch system software can normally be linked with GCB without
modifications¶.

The GCB layer checks every incoming message and decides to either pass it to the batch system
process, or handle it appropriately if it is a GCB command. GCB can use both the TCP and UDP
protocols for communication. In our experience the end to end reliability of TCP makes this protocol
preferable over the UDP protocol in hostile environments. Although the UDP protocol is, in principle,
superior in performance, it silently fails to pass the stringent requirements of the active components in
some private networks.

The GCB server is implemented as a process that can run with standard user privileges. Since the
server does not assume the responsibility of initiating connections to the clients, it can be placed
anywhere on the public internet. It maintains accurate information about the status of the clients using
the heartbeat messages they periodically send. The server is the weakest point in the system described.
It maintains the connections to all machines in the private networks, and represents both a single point
of failure and a security concern.

¶Note that GCB is only linked to the batch system software, which does the resource management. The user application will run
exactly as it is.
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GCB may be deployed to any Grid site that allows only outbound connections from the worker
nodes without intervention of network administrators. This stretches site security policies, maybe even
to an extent that allows for abuse. Security, however, should be provided in an orthogonal way to
connectivity, and developments are on their way to provide GCB with a strong security mechanism.

Resources managed by the GCB server can span multiple private networks. This means that there is
a risk of private IP address collisions, since this version of GCB uses the standard TCP/IP addressing
scheme. An extended addressing scheme is implemented in a new version of GCB (extended or eGCB)
to uniquely identify all machines.

The batch system on the user site was successfully extended across various administrative domains,
private networks and firewalls with the techniques discussed in this section. Although this allows for
easy resource management, it does not provide transparent access to files. For this an interposition
agent can be used, which allows modification of the file I/O of any application, without modifying the
application itself.

2.3. Remote execution with interposition agents

An interposition agent is a piece of software that inserts itself between two existing layers of software in
order to modify their discourse. By inserting an interposition agent rather than modifying an existing
piece of software, we may measure, debug and enhance an application without requiring intimate
knowledge of its innards. An interposition agent has many uses in a distributed system.

Seamless integration

The most common use of an interposition agent is to connect an application to a new resource, such as
a storage device, without requiring any special changes or coding in the application. For example,
an interposition agent can allow an application to seamlessly connect to a remote storage server.
The application merely perceives it to be an ordinary file system.

Improved reliability

In general, remote data services are far less reliable than local file systems. Remote services are prone
to failed networks, power outages, expired credentials and many other problems. An interposition
agent can attach an application to a service with improved reliability. For example, it can emulate a
reliable TCP connection across network outages and address changes or add reliability at the file system
layer by detecting and repairing failed I/O connections. When combined with GCB as discussed in the
previous section, it can even provide bidirectional communication for peer-to-peer applications across
private networks and firewalls.

Private name-spaces

Batch applications are frequently hardwired to use certain file names for configuration files, data
libraries, and even ordinary inputs and outputs. An interposition agent can be used to create a private
name-space for each instance of an application, thus allowing many to run simultaneously while
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keeping their I/O activities separate. For example, several instances of an application hardwired to
write to ‘output.txt’ may be redirected to write to ‘output.n.txt’, where n is the instance number.

Remote dynamic linking

Although dynamic linking offers many technical advantages for programs that share code or data,
it presents a number of practical problems. It is all too easy to migrate an application only to discover
that required libraries are missing, or worse yet, that the available libraries are the wrong version.
An interposition agent can solve these problems by allowing an application to link against libraries
stored at a single, well-known server.

Profiling and debugging

The vast majority of applications are designed and tested on standalone machines. A number of
surprises occur when such applications are moved into a distributed system. Both the absolute and
relative cost of I/O operations change, and techniques that were once acceptable (such as linear search)
may become disastrously inefficient. By attaching an interposition agent to an application, a user may
easily generate a trace or summary of I/O behavior and observe precisely what the application does.

Parrot is an interposition agent that provides the features discussed above for standard Unix
applications [10]. It observes and potentially modifies the interaction between an unmodified process
and the operating system kernel using the standard Linux ptrace debugging interface, which traps
all system calls of the process. When used in an unfriendly distributed system, Parrot provides the
illusion of a user’s home environment, including files, user identities and more. It can customize an
application’s environment to create a synthetic name-space formed from multiple remote services.
In addition, it is able to hide network outages, server crashes and other failures that are endemic to
distributed systems.

Although the notion of interposition agents is not new, they have seen relatively little use in
production systems. This is due to a variety of technical and semantic difficulties that arise in
connecting real systems together. For example, many different I/O protocols may be attached to an
application, but few provide the full range of POSIX semantics expected by many applications. For this
reason a dedicated protocol was created, Chirp‖, which provides the precise semantics that applications
expect. Each Chirp operation is a remote procedure call from a client to a server. A Chirp operation
is initiated by a client, which sends a formatted request. The server acts upon the request and sends a
response. It is assumed that Chirp is carried over a stream protocol such as TCP. Authentication and
authorization can be done through a variety of methods. Most interesting for the current setup is the
GSI authentication as mentioned before, which allows for integration of the Chirp server with the batch
system using the existing infrastructure.

Parrot is an extension to an existing operating system; it augments file-handling capabilities without
affecting a process’ ability to interact with other processes on the same machine or over a network.
Parrot is considerably simpler than other tools like virtual operating systems such as User Mode Linux

‖See http://www.cse.nd.edu/∼ccl/software/manuals/chirp.html.
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Figure 4. Interpositioning via the debugger interface.

and virtual machines such as VMWare, both of which require the user to build and maintain virtual
networks, large file system images and all of the elements of an isolated operating system in miniature.
Parrot consists of a single executable measuring only 8.4 MB with all options enabled, and as small as
1 MB in minimal configuration.

Figure 4 shows the control flow necessary to trap a system call through the ptrace interface.
Parrot registers its interest in an application process with the operating system kernel. At each attempt
by the application to invoke a system call, the host kernel notifies Parrot. Parrot may then modify the
application’s address space or registers, including the system call and its arguments. Once satisfied,
Parrot instructs the host kernel to resume the system call. At completion, Parrot is given another
opportunity to make changes before passing control back to the kernel and the application.

3. AN EXAMPLE APPLICATION

The Monte Carlo production system of the BaBar high-energy physics experiment [11] in progress at
the Stanford Linear Accelerator Center is called SP5∗∗. Although the exact details of this application
do not matter, it is interesting to know how SP5 operates at an abstract level. First, it loads the data
that describe the configuration of the detector and the physics of particle generation. Once loaded,
it enters a compute-intensive phase where it generates an arbitrary number of events that can each be
summarized in 10–100 kilobytes. This means, in theory, that SP5 has the right structure for distributed
computing. The initial data can simply be distributed to a number of processors, production can be

∗∗See http://www.slac.stanford.edu/BFROOT/www/Computing/Offline/Production/userguide/userguide.html.
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performed in parallel, and the produced events can be returned to a central site. Once initialized, any
processor can produce an arbitrary number of events, so the number of processors can be chosen to
balance startup time against desired throughput.

In practice, SP5 has a number of complexities that make it difficult to deploy in a distributed system.
A standard file system contains the SP5 executable and scripts, several dynamic libraries, the input
configuration and the output events. The program is wrapped by a script that establishes environmental
settings and verifies the integrity of the files before invoking the program. It also makes use of several
dynamically-loaded libraries, particularly the Objectivity database, which manages the configuration
and event data structures.

Objectivity is a decentralized, cooperative database built on top of a standard file system.
Consistency management, access control and crash recovery are performed cooperatively by clients
rather than enforced by a server. A minimal central server assists only with a locking protocol.
To read the configuration data or write events, the client library requests a lock from the lock server,
manipulates the file system directly and then releases the lock.

This structure is quite reasonable when viewed alone, but is difficult to adapt to an existing
distributed system. For example, the file system activity of the Objectivity client library cannot be
carried over a standard distributed file system. The delayed-writeback semantics of NFS clients are too
weak for database structures, while the strict open–close semantics of AFS would result in data loss on
the append-only transaction log. Objectivity does have the capability to speak NFS directly to a server,
bypassing the buffer cache, but deploying this requires superuser privileges at both the client and the
server; an unlikely capability in a Grid computing environment. Instead, we use Parrot to make SP5
believe it is accessing Objectivity locally, while redirecting the access across the network.

3.1. Deploying SP5 on a computational Grid

Figure 5 shows how the pieces of the distributed environment fit together. The configuration data
and output events are stored in an Objectivity-managed file system on a well-known central server.
A central lock server process assists with mutual exclusion. A number of worker nodes are used to
execute instances of SP5. Access to a number of worker nodes at various institutions is obtained by
way of Condor-G and the Globus toolkit as discussed in Section 2.1.

No special software is installed on any of the worker nodes and no superuser access is available in
these environments, so Parrot needs to carry all of the SP5 file system operations back to a Chirp server
run with standard user privileges deployed at the central server. Parrot makes the remote file system
appear local to SP5. This is comparable to a NFS client that mounts its root file system from a remote
device: all executables, dynamic libraries and other program components are loaded from the central
server via the Chirp protocol. Parrot makes local copies of executables; this is a technical necessity,
because Unix can only execute a program identified by a local file name. All data files are accessed
remotely without caching, to avoid consistency problems in the database.

In addition to the file system, a number of other small settings were necessary to fully emulate
the home environment. For example, the Objectivity libraries examine the POSIX user identifier and
host name in order to implement access control on the database. Because worker machines may not
necessarily share a user database with the central server, Parrot is instructed to trap these system calls
and change the results to match what would be seen at the central server.
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Figure 5. Deploying SP5 and Parrot on a distributed system. Communication between the batch system and the
Grid resources is arranged with GCB. File I/O of the user application is arranged with the interposition agent.

Aggressive firewalls posed a serious problem to the deployment of this system. It is quite common
for a computing cluster to be connected to the public Internet by way of a firewall and network address
translator (NAT). In the clusters targeted by this application, the NAT permits cluster nodes to initiate
outgoing TCP connections to the public Internet, but prohibits incoming connections. To translate
external addresses into internal addresses, the NAT must keep state information about every TCP
connections that it carries.

The problem arises when a NAT must discard TCP connections that it perceives to be idle.
Each connection consumes some state in the firewall, so it cannot keep them forever. The most
aggressive NAT encountered discards TCP connections that have been idle for only one minute. When
this happens, there is a double penalty: not only is the connection lost, but the NAT does not even return
a RST packet indicating that the connection was lost. The result is that both sides think the connection
is present but lossy, and retry up to their maximum timeouts, which can range from minutes to hours.

This problem was deadly to SP5. Once it initialized, the lock server connection was held open and
idle, while the Chirp connection was only used for the output of each event, at intervals of slightly more
than a minute. While SP5 was processing the first event, the NAT would discard the TCP connections.
A short time later, the entire system would hang while attempting to write out the first event.

Although it is simple to discount this firewall as an aberrant device, reconfiguring its timeout cannot
be considered a reasonable solution. For the same reasons software cannot be installed at the worker
node and superuser privileges are not available, reconfiguring the network interior at will is not an
option. (In fact, it was later discovered that these are the factory settings for the NAT in question.
The idea of negotiating with a network administrator every time this model of NAT is encountered is
not very tempting.)

One solution to this problem is to change the network endpoints to generate enough traffic to
keep the NAT state alive. For example, the networking stack at the central server can be modified
to send TCP keepalives at the rate of several per minute. This technique was applied in order to
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Table I. Performance of SP5 and Parrot deployed in a distributed system.

Distance Method Protocol CPU (GHz) Time to initialize (s) Time per event (s)

Local OS Files 1 446 ± 46 64
Local Parrot Files 1 668 ± 26 65
Local Parrot Chirp 1 777 ± 48 66

LAN Parrot NFS 1 4464 ± 172 113
LAN Parrot Chirp 1 4505 ± 155 113

WAN Parrot Chirp 2.5 6275 ± 330 88

preserve the connection between SP5 and the lock server. However, it is unsatisfying because it requires
administrator privileges on at least one end and has a system-wide effect, thus all sockets are affected.

A more comprehensive solution is to make the network protocol recoverable, so that the failure of
the TCP connection becomes a harmless event. For example, Parrot was modified so that a failed Chirp
connection was recovered by reconnecting and reopening the needed files. With this recovery method,
the Chirp connection was made fail-fast; hence, any delay of greater than 30 seconds was assumed to be
a transient network failure and would result in disconnection and recovery. This solution is more robust
than simply applying keepalives—it also tolerates the crash and recovery of the Chirp server—but could
only be implemented because the Chirp protocol was dedicated for this specific implementation and
thus could easily be modified.

The Chirp recovery method reveals an old problem in the design of distributed file systems.
Strict POSIX semantics require that an application holds references directly to files rather than names.
That is, once an application opens a file by name, it keeps access to that file even if the name is deleted
or renamed. Distributed file systems such as NFS and AFS solve this problem by exposing inode
numbers to clients. When recovering from a disconnection, NFS and AFS clients can be assured of
access to the correct files by referring to the inode numbers. Chirp cannot do this directly; the Chirp
server is implemented on top of an ordinary file system and thus can only open files by name. However,
the Chirp protocol can verify that the binding between names and inodes has not changed after a
recovery by simply querying inode numbers with the stat operation. If they have not changed, then
recovery is successful. Otherwise, recovery has failed, Parrot forces the application to fail immediately,
and the batch system becomes responsible for re-starting it from the beginning.

3.2. Performance

After addressing the problem of recovery, issues of performance are discussed. Table I shows the run-
times of SP5, gradually increasing the logical and physical distance between it and its data on the
central server. As discussed earlier, SP5 begins with an I/O-intensive startup phase, and then settles
into a CPU-intensive phase of configurable length. As the distance increases, the I/O-intensive phase
pays an increasing price, but the CPU-intensive phase is relatively stable.
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The first line of Table I shows the performance of unmodified SP5, running on the same machine
as where the data reside. The application is run in ‘validation mode’, producing additional histograms
to cross check the results. Furthermore, it produces a full debugging output so that the correctness
of the output can be verified. As a result the production is approximately a factor of five slower than
the standard production on this machine. The average and standard deviation of initialization times
are shown along with the average time to process an event. It initializes in 446 s and then processes
one event every 64 s. Each measurement of the initialization time is the result of 10 trials. The time
to process one event is an average of 2000 events. A small numbers of outliers beyond 5σ were
attributed to unrelated network traffic and discarded. Each successive row adds one component in
order to measure its contribution. The second row adds Parrot, but without any remote I/O or other
features; SP5 just accesses local files through Parrot. The third row adds Chirp, but without a network;
SP5 accesses a Chirp server on the same machine using Parrot. As can be expected, both Parrot and
Chirp slow down initialization, but have little effect on event processing.

The fourth and fifth rows show the performance of SP5 accessing its data over a local area network
(LAN) (latency 130 ± 10 µs). In the fourth row, SP5 is using a kernel-level NFS client to access
Objectivity’s files, ignoring potential consistency problems due to caching. In the fifth, SP5 is using
Parrot and Chirp to accomplish the same task safely without a cache. Although initialization is an
order of magnitude slower than the unmodified case, the performance of Chirp is comparable to NFS.
The overhead is more a function of the network than of Parrot or Chirp.

The final row shows the performance of the complete system as depicted in Figure 5. SP5 accesses its
data over a WAN (latency 654 ± 50 µs) via the firewall as discussed above. Note that the performance
numbers are not directly comparable, as the CPU is about 2.5 times faster than the others. However, the
same qualitative result as the other lines may be seen: initialization is slow, but event processing is
reasonable. Note that the opportunity to distribute jobs over many resources can decrease the turn
around time of the data processing by an order of magnitude or more, even when one makes suboptimal
use of remote resources. Hence, an exact comparison between identical machines is not really the issue
for production software in a Grid environment.

Overall, the BaBar experiment must process billions of events to complete the required simulations.
In the worst case of accessing data over a WAN, the cost of computing events equals the cost of
initialization at only 70 events. Given that a typical instance of SP5 processes 10 000, the cost of
remote execution, while significant, can be amortized across a large run.

4. CONCLUSIONS

The batch system provides the user with a familiar interface to distributed resources. The complexities
that arise from resource management in a system spanning multiple administrative domains and private
networks can effectively be hidden by Condor-G, the gliding-in technique and GCB. The GCB server
is the weakest point in the system described. It maintains the connections to all machines in the private
networks, and represents both a single point of failure and a security concern. Developments are on
their way to provide GCB with a strong security mechanism and an extended addressing scheme to
avoid IP address collisions between multiple private domains. Optimal queuing times can be guaranteed
to the users by submitting batch processes to all remote resources, annulling those which are not used.
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Resource allocation can further be optimized with the development of more intelligent resource
planning and scheduling agents.

Interposition agents bridge the gap between applications and systems when neither are available for
modification. By raising the level of abstraction on which an application executes in a batch system, a
transparent and reliable environment is provided, even in an unreliable distributed system. Deploying
a complex application into a distributed system is quite feasible for an ordinary user with the tools
presented in this paper, as shown with the BaBar Monte Carlo production system.

ACKNOWLEDGEMENTS

We thank Concezio Bozzi and the BaBar Monte Carlo production team for their assistance with SP5 and the
production site. Furthermore, we acknowledge the valuable help of David Groep and Jeff Templon during the
deployment of our application on the NIKHEF EDG testbed.

REFERENCES

1. Allen G et al. GridLab: Enabling applications on the Grid. Proceedings of Grid Computing. Springer: Berlin, 2002; 39–45.
2. Tannenbaum T, Wright D, Miller K, Livny M. Condor—a distributed job scheduler. Beowulf Cluster Computing with

Linux. The MIT Press: Cambridge, MA, 2002.
3. Frey J, Tannenbaum T, Foster I, Livny M, Tuecke S. Condor-G: A computation management agent for multi-institutional

Grids. Journal of Cluster Computing 2002; 5:237–246.
4. Foster I, Kesselman C. Globus: A toolkit-based Grid architecture. The Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann: San Mateo, CA, 1999; 259–278.
5. Foster I, Kesselman C, Tsudik G, Tuecke S. A security architecture for computational Grids. Proceedings of the ACM

Conference on Computer and Communications Security. ACM Press: New York, 1998; 83–92.
6. Czajkowski K et al. A resource management architecture for metacomputing systems. Proceedings of the Workshop on Job

Scheduling Strategies for Parallel Processing. Springer: London, 1998; 62–82.
7. Bester J et al. GASS: A data movement and access service for wide area computing systems. Proceedings of the Workshop

on I/O in Parallel and Distributed Systems. ACM Press: New York, 1999.
8. Allcock W et al. Protocols and services for distributed data-intensive science. Proceedings of ACAT. AIP: Woodbury, NY,

2000; 161–163.
9. Son S, Livny M. Recovering internet symmetry in distributed computing. Proceedings of CCGrid. IEEE Computer Society

Press: Los Alamitos, CA, 2003.
10. Thain D, Livny M. Parrot: Transparent user-level middleware for data-intensive computing. Proceedings of the Workshop

on Adaptive Grid Middleware, New Orleans, LA, September 2003. PDCP-SWPS: Warsaw, Poland, 2003.
11. Harrison PF, Quinn HR. Physics at an asymmetric B factory. The BaBar Physics Book (SLAC Report 504), Stanford

University, Stanford, CA, 1998.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:787–801


	1 INTRODUCTION
	2 WORKING ON A COMPUTATIONAL GRID
	2.1 Resource management
	2.2 Dealing with network complexity
	2.3 Remote execution with interposition agents
	Seamless integration
	Improved reliability
	Private name-spaces
	Remote dynamic linking
	Profiling and debugging


	3 AN EXAMPLE APPLICATION
	3.1 Deploying SP5 on a computational Grid
	3.2 Performance

	4 CONCLUSIONS

